Grammatiliste vigade parandamine mitmekeelse neuromasintõlkega

Laen...
Pisipilt

Kuupäev

Ajakirja pealkiri

Ajakirja ISSN

Köite pealkiri

Kirjastaja

Tartu Ülikool

Abstrakt

We introduce an approach to grammatical error correction that does not require annotated training data. We train a multilingual neural machine translation model that uses only language-parallel translations. There are more openly available translations available than grammatical error correction corpora, especially for low-resource languages like Estonian. We find out that this system has high recall but low precision. So it corrects plenty of mistakes but adds many mistakes to correct text. Adding artificial mistakes increases the recall and has really positive impact on spelling error correction. Our model reliably corrects grammatical errors, like subject-verb agreement and noun number, but struggles with lexical errors and unnecessary paraphrasing.

Kirjeldus

Märksõnad

natural language processing, neural machine translation, grammatical error correction

Viide