Grammatiliste vigade parandamine mitmekeelse neuromasintõlkega
Laen...
Kuupäev
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Tartu Ülikool
Abstrakt
We introduce an approach to grammatical error correction that does not require annotated
training data. We train a multilingual neural machine translation model that uses only
language-parallel translations. There are more openly available translations available
than grammatical error correction corpora, especially for low-resource languages like
Estonian. We find out that this system has high recall but low precision. So it corrects
plenty of mistakes but adds many mistakes to correct text. Adding artificial mistakes
increases the recall and has really positive impact on spelling error correction. Our model
reliably corrects grammatical errors, like subject-verb agreement and noun number, but
struggles with lexical errors and unnecessary paraphrasing.
Kirjeldus
Märksõnad
natural language processing, neural machine translation, grammatical error correction