Arvutitehnika õppekava lõputööd
Permanent URI for this communityhttps://hdl.handle.net/10062/25563
Arvutitehnika lõputööd alatest 2010. aastast
Browse
Browsing Arvutitehnika õppekava lõputööd by Issue Date
Now showing 1 - 20 of 39
- Results Per Page
- Sort Options
Item OGCE (Open Grid Computing Environments)(Tartu Ülikool, 2006) Türk, Raido; Vainikko, Eero, juhendajaItem Päikesesüsteemi mudeli tehniliste lahenduste väljatöötamine(Tartu Ülikool, 2010) Peets, AloInimesed nägid Päikesesüsteemi kaua aega geotsentrilisest vaatekohast ning sellest tulenevalt ei saanud nad selle loomusest ja ehitusest aru. Päikesesüsteemi objektide näivaid liikumisi Maalt vaadatuna peetigi nende tegelikeks liikumisteks ümber Maa, mida arvati paigal seisvat. Peale selle ei ole paljud Päikesesüsteemi objektid ja nähtused palja silmaga vaadeldavad. Nõnda nõudis adekvaatne arusaamine Päikesesüsteemist teoreetilisi ja tehnilisi saavutusi. Kõige esimene ja põhjapanevam neist saavutustest oli Mikołaj Koperniku (1473-1543) teooria: Päikesesüsteemi heliotsentriline mudel, mille järgi kõik planeedid liiguvad ümber Päikese ringikujulistel orbiitidel. Juba sõna "Päikesesüsteem" ise eeldab niisugust vaateviisi. Ent kõige tähtsam oli see, et ümber Päikese tiirlev Maa osutus üheks planeetidest. Teiseks suuremaks saavutuseks on Kepleri seaduste formuleerimine (planeedid liiguvad mööda ellipsikujulisi orbiite) ja Isaac Newtoni (1643-1727) gravitatsiooniteooria kasutuselevõtt, mis võimaldas juba väga täpselt arvutada planeetide asukohti taevas. Tartu Ülikooli tähetorn, omal ajal maailma astronoomia tähtsamaid keskusi, on osa Eesti teadusajaloost. Tähetorn rajati aastatel 1808-1810 ülikooli arhitekti Johann Wilhelm Krause projekti järgi Toomemäe kaguossa keskaegse piiskopilinnuse asukohale. 2011. aasta kevadel taasavatakse Tartu tähetorn muuseumina. Üheks soovitud muuseumieksponaadiks on Päikesesüsteemi mudel, mille ehitamiseks pöörduti Tartu Ülikooli Tehnoloogia Instituudi poole. Mudeli ülesandeks on demonstreerida planeetide liikumist ja nende vastastikuste asendite (planeediseisude) kujunemist. Mudel peaks võimaldama esile kutsuda planeetide asendit kindlatel kuupäevadel ning vastavatest planeediseisudest alustades jälgida planeetide liikumist orbiitidel. Käesolev töö sisaldab Tartu Ülikooli magistrandi Alo Peets välja pakutud tehnilisi lahendusi, skeeme, jooniseid ja arvamusi, kuidas vastavat mudelit kõige arukam valmistada oleks. Magistritöö lisades on olemas mudeli valmistamiseks soovitatud lahenduste dokumentatsioon (2010. aasta maikuu seisuga). Projekti lahendused kattuvad osaliselt Alo Peetsi bakalaureusetööga „Reaalaja tagasiside süsteemi väljaarendamine õppeprotsesside kvaliteedi tõstmiseks“.Item ESTCube-1 satellite beacon(Tartu Ülikool, 2010) Kvell, UrmasESTCube-1 shall be the first Estonian satellite to be launched in 2012. The mission has innovative scientific and educational objectives. The goal of ESTCube-1 satellite is to successfully deploy a single 10 meter long Hoytether structure in low Earth orbit using centrifugal force. The successful tether deployment is needed to demonstrate critical technologies for a full-scale Electric Solar Wind Sail (ESAIL) test mission in the future. The concept of ESAIL has potential to become one of the most efficient space propulsion technologies. It is based on the interaction between the positively charged particles in the solar wind with the positively charged tether net deployed from a satellite. Each tether is a four-fold Hoytether structure so it can be made very light but the whole structure shall retain the durability that is needed in a space environment. The concept was proposed by Pekka Janhunen from Finnish Meteorological Institute in 2006. ESTCube-1 is being developed by students from the University of Tartu and Tallinn University of Technology in tight cooperation with international partners from Finland (Finnish Meteorological Institute, University of Helsinki, Jyväskylä University) and Germany (DLR Bremen). ESTCube-1 communications subsystem (COM) is responsible for the communication between a ground station (GS) and the spacecraft. It can receive telecommands from the GS for setting different operating modes and requests to transmit data. There are two different types of downlink transmission modes: LPTM - Low Power Transmission Mode (Beacon) HPTM - High Power Transmission Mode (Data) The beacon is used for tracking the satellite and to get a simple overview of the satellite's status. The beacon data contains a small subset of telemetry data that is transmitted periodically in Morse code. The HPTM is used for transmitting large amounts of mission data. This consists of telemetry data from each subsystem and the experiment data, for example a picture taken by the camera. HPTM is turned on only after receiving a certain telecommand. The main goals of the current work were to: analyze other CubeSat projects beacon implementations; analyze requirements for ESTCube-1 beacon; determine optimal parameters for ESTCube-1 beacon (output power, transmission period, modulation, beacon data, operating frequency); propose a beacon design for ESTCube-1; analyze operational risks of the beacon design; develop beacon radio frequency (RF) electronics prototype; measure the output parameters of the prototype (signal purity, signal strength, on/off signal ratio. The work consists of ten Chapters. In Chapter 4, an overview of other CubeSat projects beacon implementations is given to see different solutions that are currently operational on orbit. Chapter 5 describes ESTCube-1 satellite in more detail with focus on COM subsystem. Chapter 6 analyzes requirements for developing a satellite beacon. Based on that analysis a beacon design is proposed in Chapter 7. Chapters 6 and 7 form the main body of the work. Chapter 8 describes the beacon radio frequency electronics prototype development and measurement analysis. In Chapter 9, the results of this work are discussed and future activities are proposed. In Chapter 10, most important of these results are concluded and the completion of goals is assessed.Item Fokuseeritava läätsesüsteemi konstrueerimine ja prototüüpimine(Tartu Ülikool, 2010) Vunder, VeikoKäesoleva magistritöö eesmärgiks oli koostada mikroläätsesüsteem, mis kasutaks aktuaatorina ioonjuhtivat elektroaktiivset polümeeri. Prototüübi konstrueerimiseks sobis kõige paremini deformeeruva membraaniga vedelikläätse valmistamise tehnoloogia, mille abil ehitati lihtne ja odav mikroläätse prototüüp. Esimeses kahes peatükis antakse põgus ülevaade EAP aktuaatoritest, nende tüüpidest ja omadustest ning tutvustatakse kaasaegsetes mikroläätsesüsteemides levinud materjali – PDMS. Järgnevates peatükkides kirjeldatakse läätsesüsteemi ideed, töötava prototüübi valmistamisprotsessi ja analüüsitakse tekkinud probleeme ning mõõdetud tulemusi. Teema on atraktiivne, sest suhteliselt vähe on uuritud IPMC abil mikroläätse juhtimist ja meile teadaolevalt ei ole siiani kasutatud muutuvfookusega mikroläätse juhtimiseks polümeer-süsinik komposiitmaterjali.Item Ioonide lennuaja spektromeetri elektroonikasüsteemi täiustamise võimalused(Tartu Ülikool, 2010) Laaniste, HeikiKäesolev referatiivne uurimistöö käsitleb Turu Ülikoolile kuuluva, aga põhiliselt Lund-i Ülikooli MAX laboratooriumis kasutatava ioonide lennuaja spektromeetri (Time of Flight, TOF) elektroonikasüsteemi täiustamise võimalusi, keskendudes sealjuures sellest süsteemist lähtuvate signaalide digitaliseerija uurimisele ja võimalike uute ning paremate digitaliseerijate otsimisele. Töö annab sissejuhatava ülevaate ioonide lennuaja mõõtmisest massspektroskoopia metoodikaga ja massspektromeetrite põhiomadustest ning MAX laboris asuva TOF elektroonikasüsteemi olemusest. Internetiuuringu põhjal tehtud suurem osa tööst sisaldab informatsiooni ja analüüsi erinevate tootjate poolt pakutavate digitaliseerijate ning aeg-digitaalmuundajate kohta. Võrdlevad tabelid annavad ülevaate mõnedest kõige kiirematest saadaolevatest (ja ka mõnest peatses tulevikus saadaolevast) seadmetest, mida oleks võimalik kasutada massspektroskoopia mahukate eksperimendiandmete kogumiseks ja salvestamiseks.Item Requirements and analysis of Multispectral Volume Scattering Meter(Tartu Ülikool, 2011) Puussaar, AareThe volume scattering function (VSF), which describes the angular distribution of light scattered from an incident beam, is a fundamental inherent optical property of the aquatic environment. Despite its fundamental nature, there is little known about the range of variability in the VSF in the aquatic environment. This is mainly because the measurements of the function are difficult to perform. A lot of currently used radiate transfer models are based on a very limited set of measurements, which are made over 20 years ago. For the correct calculations of the radiate transfer, it is essential to know the variations of the phase function. Instruments, which have previously been used for measuring VSF, were complicated, bulky and most importantly: they are not able to take measurements of the function in full angular range. The purpose of this document is to describe the system requirements specifications of a Multispectral Volume Scattering Meter (MVSM). Document describes a new instrument for measuring the volume scattering function of seawater and other natural waters across a hemispheric angle range. System requirements and analysis is put together following modern methodology and standards. The measurement principles implemented in the device, are based on static scatter approach. Photomultiplier tube (PMT) is used to detect scattering light at different angles. Device’s mechanistic approach involves a use of a special periscope prism and a novel light shadow method.Item Multispektraalse ruumhajumismõõtja riistvara ja tarkvara funktsionaalne ning arhitektuuriline disain(Tartu Ülikool, 2011) Ginter, TiitVeekogude soojus- ja valgustingimuste modelleerimiseks on vajalik teada vee tagasihajumise funktsiooni. Selle mõõtmiseks kasutatakse enamasti fikseeritud nurgaga mõõteseadmeid, mille mõõtetulemuse järgi arvutatakse hajumisfunktsiooni väärtus. Siiani ei ole tootmises ühtegi universaalset tööstusliku seadet, mis võimaldaks teostada hajumisfunktsiooni mõõtmist kõigi hajumisnurkade (0…π) korral vahetult veekogus. On mitmeid tööstuslikke fikseeritud nurgaga hajumisfunktsiooni mõõteseadmeid, samuti mõõteseadmeid, mis võimaldavad mõõta hajumist mingis nurgapiirkonnas erinevate nurkade korral. Üks vähestest teadaolevatest universaalse seadme prototüüpidest on valmistatud Kanada ja Ukraina teadlaste koostööna; selle prototüübi kaasajastamine ja väiketootmiseks ettevalmistamine on plaanis teostada Tartu Observatooriumi, Ukraina TA Mereinstituudi ja AS Interspektrum koostöös. Seadmel on vaja välja töötada ja valmistada uus juhtelektroonika ja tarkvara lähtudes tänapäevasest manussüsteemide väljatöötamise ja koostamise printsiipidest. Samuti on vaja optimeerida seadme optiline ja mehaaniline ehitus tagamaks sobivust väiketootmise võimalustega. Käesoleva töö eesmärgiks oli multispektraalse ruumhajumismõõtja juhtarvuti riistvara ja tarkvara funktsionaalse disaini koostamine moderniseeritud seadme prototüübi valmistamiseks. Juhtkontrolleri osas oli samuti eesmärgiks analüüsida funktsionaalse disaini sobitamist konkreetsete arhitektuurilise disaini variantidega. Uurimisülesanneteks oli esmalt tutvuda vee optiliste omaduste määramise algoritmide ja metoodikaga ning tulemuste põhjal analüüsida vee hajumiseparameetreid mõõtva seadme juhtimiseks ja vajalike vee optiliste omaduste arvutamiseks sobivaid algoritme, hinnata nende arvutusmahukust ja tulemustest lähtuvalt koostada seadme funktsionaalne disain. Funktsionaalse disaini tulemuste põhjal analüüsiti arhitektuurilise disaini võimalikke variante. Antud töö kirjutamisel on arvesse võetud Aare Puussaare (2011) lõputöö raames koostatud multispektraalse ruumhajumismõõtja nõuete kirjeldust ja analüüsi.Item Designing, Implementing and Testing the Solar Power Harvesting System for ESTCube-1(Tartu Ülikool, 2011) Rantsus, RamonEstonian Student Satellite project started in the summer of 2008 at Tartu University with the objective for promoting space and giving students a hands-on experience on developing space technologies. The main outcome of the project was pronounced to be a fully operational picosatellite ESTCube-1 - the first Estonian satellite. The goal of ESTCube-1 satellite is to deploy a single 10 meter long Hoytether in low Earth orbit using a centrifugal force. The success criteria for this objective is the deployment of the tether and the snapshot of the visual confirmation of the deployment. The successful tether deployment is needed to demonstrate technologies for a full-scale Electric Solar Wind Sail (ESAIL) test mission in the future. The concept of ESAIL has potential to become one of the most efficient space propulsion technologies in the history. ESAIL is based on the interaction between the positively charged particles in the solar wind with the positively charged tether net deployed from a satellite. Each tether is a fourfold Hoytether structure to be as light as possible, but to maintain the durability needed in the harsh space environment. The concept was proposed by Pekka Janhunen from Finnish Meteorological Institute (FMI) in 2006. The concept of ESAIL has potential to become one of the most efficient space propulsion technologies ever invented. ESTCube-1 Electrical Power System (EPS) is responsible for gathering power from solar panels, storing into batteries and distributing it to the whole system.The main goals of the current work were to: analyze solar panels characteristics and solar power harvesting concept; analyze the concept of Maximum Power Point Tracking (MPPT); analyze requirements for solar panel controller; propose a solar panel controller design for ESTCube-1; develop a solar panel controller prototype; test the algorithm of MPPT; test the efficiency of solar power harvesting. The work consists of eight Chapters. The Chapter 3 gives a more detailed overview of ESTCube-1 satellite with focus on EPS subsystem. Chapter 4 analyzes the concept of solar power harvesting and the need of MPPT. Also the general characteristics of solar cells are analyzed and the simple model of solar cell work is pointed out. Chapter 5 proposes the design layout of solar panel controller, the implementation of MPPT algorithm and the implementation of solar panel controller software. Based on the design layout, the solar panel controller prototype development with measurement analyzes are described in Chapter 6. Chapter 5 and 6 form the main body of the work. In Chapter 7 the future activities are proposed and in Chapter 8 most important results are concluded and the completion of goals is assessed.Item Autonoomne seade elastsusmooduli mõõtmiseks(Tartu Ülikool, 2011) Kautlenbach, SvenMaterjali pinge ja deformatsiooni vahelise seose kirjeldamiseks kasutatakse elastsusmoodulit, mis kirjeldab keha struktuuri muutust jõu avaldumisel. Vastavalt struktuuri muutustele on võimalik määrata materjali jäikus/elastsus. Elastsuse määramisega on võimalik leida materjali jaoks sobiv kasutusvaldkond. Elastsusmoodul annab seega kasuliku infona keha füüsilise ja keemilise ehituse mõju materjali elastsetele omadustele. Elastsuse leidmist kasutatakse palju teadustöös, mille raames arendatakse küllaltki uue tehnoloogiaga polümeerseid aktuaatoreid. Tartu Ülikooli tehnoloogiainstituut on üks mitmest teadusasutusest üle maailma, kus sellega tegeldakse. Taoliste aktuaatorite jõud ja kiirus on selges seoses nende elastsusmooduliga, seega oleks teadlastel vaja alati pärast uue materjali valmimist kiiresti ja lihtsasti mõõta selle Youngi moodul. Youngi moodul E on üks peamiselt kasutatavast elastsusmoodulist. Käesoleva bakalaureusetöö eesmärgiks oli valmistada autonoomne seade, mida saab kerge vaevaga kasutada pehmete materjalide Youngi mooduli mõõtmiseks. Masina tööpõhimõtte aluseks on mehaanikas laialt kasutuspinda leidnud kolme punkti meetod. Antud lõputöö jaguneb nelja peatükki. Esimene peatükk kirjeldab elastsusmooduli mõistet ning annab ülevaaate selle eksperimentaalsest määramisest. Teises peatükis käsitletakse loodud seadmele esitatud nõudeid ning tuuakse valminud seadme tööpõhimõtte kirjeldus. Tehniline informatsioon loodud elastsusmooduli mõõteseadme kohta on leitav kolmandast peatükist ning kõige lõpuks on neljandas peatükis antud seadmele mõõtmistulemuste veahinnang.Item Akustilise signaali leviaja mõõtmisel põhinev lokaliseerimise süsteem(Tartu Ülikool, 2011) Tilk, TeetAkustilise signaali lokaliseerimist kasutatakse eelkõige militaarsetel eesmärkidel. Relvast laskmisel tekkivat tugevat helilaine rõhku on võimalik mikrofonidega mõõta kuni 20 km kauguselt. Erinevatesse asukohtadesse paigutatud mikrofonideni ehk mõõtepunktideni jõuab helilaine erineval ajal. Mõõtepunktide asukohti ja signaali levimise aegade erinevusi arvesse võttes saab välja arvutada akustilise signaaliallika asukoha. Erinevalt radaril põhinevast relva asukoha määramise süsteemist, on käesolevas töös kirjeldatud süsteemi eeliseks passiivsus. Seega ei paljasta süsteem töö ajal võimalikule vastasele oma asukohta. Käesoleva töö eesmärgiks on luua akustilise signaaliallika lokaliseerimise süsteem, mis võimaldaks 20 km kauguselt määrata 135 dB helirõhuga relva asukoha 30 m täpsusega. Sealjuures peavad kaheksa mõõtepunkti olema laiali paigutatud lõigule, mille pikkus on 10 km. Mõõtepunktide asukohad tuleb määrata täpsusega kuni 3 m. Seatud eesmärgi saavutamiseks on vajalik: • konstrueerida kaheksast mõõtepunktist koosnev riistvara, mis võimaldaks vastu võtta 20 km kauguselt akustilise signaali ning digitaliseerida signaalid töötlemiseks arvutiga; • luua tarkvara, mis võimaldaks: • rakendada signaalidele filtreid; • kuvada reaalajas ekraanile signaalide aegesitused; • tuvastada signaalide algushetked automaatselt või lubada kasutajal peatada signaalide aeg-esituse graafik ning määrata algushetked käsitsi; • vastavalt signaalide algushetkede erinevustele ja mõõtepunktide asukohtadele arvutada signaaliallika asukoht. Käesolev magistritöö koosneb neljast peatükist, millest esimene annab ülevaate erinevatest signaaliallika lokaliseerimise meetoditest ja akustilise lokaliseerimise süsteemidest, teine peatükk kirjeldab arvutusmeetodeid, kasutatud algoritme ja kasutatavat riistvara. Kolmandas peatükis selgitatakse käesoleva töö käigus loodud akustilise signaaliallika lokaliseerimise süsteemi riistvara ja tarkvara lahendusi. Neljandas peatükis antakse ülevaade tehtud katsetuste ja mõõtmiste tulemustest ning tulemuste analüüsist.Item ESTCube-1 Tether End Mass Imaging System Design and Assembly(2012-05-28) Kuuste, HenriThe primary mission of the first Estonian student satellite, ESTCube-1, is to test the electric solar wind sail principle in ionospheric plasma. In order to accomplish this, the CubeSat standard based spacecraft will be launched into polar low-Earth orbit (LEO) and a small aluminium mass attached to the end of a 10 m long tether is to be reeled out using centrifugal force. The tether is then charged and the effect of ionospheric plasma on the angular velocity of the satellite is measured. During this experiment, the deployment of the tether needs to be verified. Therefore, an imaging system capable of capturing the tether end mass at various distances from the satellite has been developed. On ESTCube-1 this system is also used to carry out the secondary objective of Earth imaging for outreach purposes. Moreover, the camera has been designed as an independent module that is reusable in future spacecraft missions with extremely limited weight, volume, power, and communication bandwidth. The goals of this work were stated as follows: • List the requirements for the camera subsystem of ESTCube-1. • Design an independent, robust, and reusable camera module for use in small satellites. • Outline camera module firmware design. • Create software for camera control and testing. • Test the functionality and electrical characteristics of the resulting hardware. The research presented in this study was conducted over a period of one and a half years. During this time preliminary studies were conducted, two hardware prototypes and the final engineering model were constructed and tested. Several iterations of firmware and detailed test plans were developed.Item Seade elektroaktiivsete polümeeride painutamiseks(2012-05-29) Viidalepp, ErkiElektroaktiivsed polümeerid (EAP) on materjalid, mis muudavad elektrivoolu mõjul oma mõõtmeid või kuju. Tänu sellele omadusele on neid materjale võimalik kasutada täituritena. Elektroaktiivset polümeeri välise jõuga painutades tekib selle elektroodidel pinge, millest tulenevalt saab antud materjale kasutada ka sensorina. Polümeersetest materjalidest täiturite uurimis- ja arendusprotsessi tarvis on Tartu Ülikooli Tehnoloogiainstituudis ja mujal maailmas juba konstrueeritud mitmeid erinevaid EAPde omadusi mõõtvaid seadmeid. Käesoleva bakalaureusetöö eesmärgiks on disainida ja ehitada seade, mis painutaks elektroaktiivset polümeerset materjali ning võimaldaks painutamise käigus testida materjali sensoromadusi. Seadme tööpõhimõte seisneb pehmete materjalide mehaanilises painutamises ning selle tulemusel kahe elektroodi vahele tekkiva pinge mõõtmises. Valmistatava seadme eripäraks on see, et sellega pehmet materjali painutades vastab materjali kuju igal painutusnurgal teatud raadiusega ringjoone kaarele. Käesolev bakalaureusetöö koosneb viiest peatükist. Esimeses peatükis antakse ülevaade elektroaktiivsetest polümeeridest. Teises peatükis käsitletakse erinevaid seadmeid, mille abil on varem EAPde omadusi uuritud. Käesoleva töö raames valminud seadmele esitatud nõuded on toodud kolmandas peatükis. Neljandas peatükis tutvustatakse ehitatud seadme tööpõhimõtet, konstruktsiooni, kasutatud elektroonikat ja tarkvara. Viimases peatükis analüüsitakse loodud seadme parameetreid ja seadmega tehtud proovimõõtmiste tulemusi.Item Saatja-vastuvõtja tüüpi Foucault’ kardiograafi vastuvõtuploki ehitamine(2012-05-29) Babkin, JuriKäesolev bakalaureusetöö on tehtud Tartu Ülikooli füüsika instituudis ja firmas „Humal Elektroonika“. Töö käsitleb nii meditsiinitehnika küsimusi kui ka riistvara ehitamise (projekteerimise) ja tarkvara loomise meetodeid ning kuulub arvutitehnika valdkonda. Meditsiinis püsib vajadus mitteinvasiivses diagnostilises ja monitooringuvahendi järele, mis võimaldaks jälgida patsientide südame mehaanilist tegevust detailselt, pidevalt ja pikaaegselt. Sellist vajadust võib rahuldada Foucault’ kardiograafia (FouKG) meetod, mida on palju aastaid uuritud ja arendatud Tartu Ülikoolis. Meetod põhineb kõrgsagedusliku magnetvälja poolt indutseeritavate pöörisvoolude energia neeldumise registreerimisel patsiendi uuritavas piirkonnas. Töö eesmärk on kolme pooliga saatja-vastuvõtja tüüpi Foucault’ kardiograafi vastuvõtuploki ehitamises. Idee selleks on pärit Leo-Henn Humalalt. Eesmärgi saavutamiseks oli vaja lahendada mitu ülesannet: ehitada vastuvõtupoolide ja signaalitöötluse süsteem, milles ühes poolis tekkivad võnkumised detekteeritakse ja muundatakse digitaalsele kujule; korraldada andmete esmane töötlus programsel tasemel; organiseerida saatmine haldurarvutisse, kus toimub mõõtetulemuste kuvamine graafikul; katsetada ja testida ehitatud süsteemi.Item Elektroaktiivsete polümeeride testimise stend(2012-05-29) Olentšenko, GeorgiElektroaktiivsed polümeerid (EAP-d) on materjalid, mis võivad muuta oma kuju kui neile on rakendatud pinge. Kuigi sellised materjalid ei arenda suurt jõudu, siis tänu kujumuutmisomadustele on EAP-dele leitud palju rakendusi Maal. Kosmoseprojektid on aga tagasihoidlikumad selliste materjalide rakendamisega. Põhjus on EAP-de teadmata töökindluses. Neid materjale ei ole piisavalt testitud. Sellise olukorra muutmiseks on algatatud töökindlate ioonjuhtivate elektroaktiivsete polümeeride väljatöötamise projekt (ESTPECS-13), mille üheks osaks ongi erinevate EAP-de testimine. Projekti jooksul ehitatakse elektroaktiivsete polümeeride testimise stend, mis võimaldab automatiseeritult testida EAP-e. Käesoleva töö eesmärgiks on paigaldada elektroaktiivsete polümeeride testimise stendi alla fiksaator, mis toetab stendi elektrikatkestusel, kuid ei sega stendi tööd. Lisaks peab stend olema võimeline tuvastama elektrikatkestusi ja vajadusel jääma fiksaatori peale seisma. Käesolev töö tutvustab elektroaktiivseid polümeere ja nende rakendusi. Siis räägitakse töökindlate ioonjuhtivate elektroaktiivsete polümeeride väljatöötamise projektist. Edasi tutvustatakse elektroaktiivsete polümeeride testimise stendi ülesehitust ja tööpõhimõtet. Töö põhiosa on stendi fiksaatori kahe lahenduse kirjeldus. Mõlemal lahendusel on oma tööalgoritm. Lõpuks kirjeldatakse kasutatud elektrikatkestuse tuvastamise meetodit ja stendi seiskamist katkematu toiteallika abil.Item Aerosooli tekke modelleerimisprogrammi lisatarkvara(2012-05-29) Ploom, IndrekÜldjoontes oli eesmärgiks luua süsteem, mis omaks senise süsteemi kõiki olulisi võimalusi, aga oleks viidud sellisele baasile, milles oleksid kõrvaldatud senise süsteemi põhilised puudused ja milles saaks teda hiljem hõlpsasti täiendada. Eesmärgiks oli luua kasutaja jaoks võimalikult lihtne ja kasutajasõbralik süsteem, mille kasutamine ei nõuaks kasutajalt erilisi teadmisi. Oluline oli see, et kasutaja saaks lihtsasti sisestada ja muuta lähteparameetreid (või neid automaatselt ettenähtud vahemikes genereerida) ning muus osas käiks töö tema jaoks täis automaatselt, vajutades vaid vastavaid nuppe. Kindlasti pidi programm võimaldama lähtekomplektide salvestamist või laadimist nimega failist. Puududa ei tohtinud ka kõikide väljade tühjendamine ühe nupuga ehk algseisu taastamise funktsioon ega vaikeväärtuste seadmiste võimalus. Pidi olema võimalus märata vahemikke, kust programm genereeriks juhuslike arvude baasil väärtusi. Tulemuste võrdlemine referentsväärtustega pidi samuti olema täisautomaatne. Kasutaja jaoks pidi kõik olema realiseeritud graafilises kasutajaliideses. Graafiline aken pidi olema inglise keeles, et seda programmi saaksid kasutada ka muukeelsed.Item ESTCube-1 elektromagnettõukurite automatiseeritud kerimisseadme arendus ja testimine(2012-05-30) Uiboupin, TõnisEesti Tudengisatelliidi projekt alustas 2008. aasta suvel Tartu Ülikoolis eesmärgiga edendada kosmosetehnoloogiaalaseid teadmisi. Projektist on välja kasvanud Tartu Ülikooli, Tallinna Tehnikaülikooli, Helsingi Ülikooli, Saksa kosmoseagentuuri ja Eesti Lennuakadeemia tudengite täismõõduline rahvusvaheline koostöö. Projekti abil on õpilastel võimalik omandada olulisi praktilisi kogemusi teadustöö realiseerimisel ning projekti arendamisel algusest lõpuni. ESTCube-1 satelliit on esimene Eesti Tudengisatelliidi projekti raames arendatav satelliit. ESTCube-1 põhineb Cubesat standardil, mille töötas välja Kalifornia Riiklik Polütehniline Ülikool (California Polytechnic State University – Cal Poly) koostöös Stanfordi Ülikooliga. Standard on mõeldud peamiselt tudengisatelliitide projektideks ja see võimaldas muuta satelliitide ehitamise ja üleslaskmise palju odavamaks ning kättesaadavamaks. Selle bakalaureusetöö eesmärgiks on konstrueerida automatiseeritud elektromagnettõukurite kerija, selle arendamine, riistvaraliste ja tarkvariliste nõuete koostamine. Tõukurid on vajalikud ESTCube-1 satelliidi asendi määramise ja kontrolli süsteemis (ADCS – Attitude Determination and Control System). Antud lõputöö jaguneb viieks peatükiks. Esimene peatükk kirjeldab satelliidi asendi määramise ja kontrolli süsteemi eesmärki. Teises peatükis seletatakse lahti elektromagnettõukurite tööpõhimõte. Kolmandas peatükis käsitletakse loodud seadmele esitatud nõudeid ning tuuakse seadme tööpõhimõtte kirjeldus. Tehniline informatsioon loodud elektromagnettõukurite kerimisseadme kohta on leitav neljandast peatükist ning kõige lõpuks on viiendas peatükis antud seadme ning keritud tõukurite testimisenõuded.Item Praktilised ülesanded digitaalse signaalitöötluse meetoditega tutvumiseks(2012-06-01) Tiirik, KarlDigitaalne signaalitöötlus (LOFY.03.010) koos kaasnevate praktiliste töödega on olnud arvutitehnika eriala kohustuslikus aineks juba neli aastat. Õppeaine eesmärgiks on anda ülevaade digitaalse signaalitöötluse põhitõdedest ja -printsiipidest reaalsete süsteemidega töötamisest tuleneva praktilise kogemuse kaudu. Kahjuks puuduvad jõukohased ja detailsete juhenditega praktikumitööd. Seetõttu jääb aine olemuselt teoreetiliseks ja ei ole võib-olla nii kergesti omandatav. Käesoleva bakalaureusetöö eesmärgiks on koostada praktikumitööd ning -juhendid, mis põhinevad TMS320VC5510 digitaalsel signaalitöötlusprotsessoril ja võimaldaks tudengitel tutvuda digitaalse signaalitöötlusega inimkõrvaga kuuldavas sagedusvahemikus. Praktilisi ülesandeid peab olema võimeline lahendama ilma eelteadmiseta protsessorite programmeerimisest. Protsessorite programmeerimise õppimiseks on Tartu Ülikoolis olemas eraldi kursused. Töö eesmärgi saavutamiseks tuleb programmeerida vajalik tarkvara ja näitefailid ning luua katsestend, millel oleks võimalik praktilisi töid teha. Kokku peaks moodustuma terviklik lahendus. Bakalaureusetöö algab töös kasutatud lühendite vastete ja lühikese seletusega. Esimeses peatükis tutvustatakse digitaalse signaalitöötluse ja selleks kasutatava riistvara arengut. Töö teises osas tutvustatakse TI TMS320VC5510 digitaalset signaalitöötlusprotsessorit (DSP), selle arhitektuuri, võimalusi ja omadusi. Samuti kirjeldatakse lühidalt konkreetset arendusplaati, mida praktikumi kasutatakse ja millel paikneb TI TMS320VC5510 DSP. Töö viimases osas kirjeldatakse loodud vahendeid ning katsestendi ja pakutakse välja konkreetseid praktilisi töid. Detailsed juhendid ja näitefailid on paigutatud lisadesse, et vältida põhiteksti koormamist ja pikaks venimist. Lisades olev DVD sisaldab vajalikku tarkvara, juhendeid ja näitefaile.Item Juhtprogrammi ning riistvara projekteerimine täisautonoomsele LPC1768 ARM Cortex-M3 protsessoril baseeruvale andmehõivemoodulile(2012-06-01) Sepp, MadisArvutusvõimsuse kiire kasv ja erinevate tarkvara- ja riistvaraplatvormide laialdane levik on loonud olukorra, kus klassikalist andmehõivemoodulit saab kergesti luua suvalise manussüsteemides kasutatava kontrolleri baasil. Sellise lahenduse eeliseks on asjaolu, et mõõdetavat andmevoogu saab suunata läbi mõne liidese edasi kohta, kus andmete salvestamine, edasine töötlemine ja esitamine on otstarbekam kui andmehõivemoodulis endas. Klassikaliselt salvestatakse mõõdetavad andmed mõõteseadmes endas või edastatakse läbi USB või RS232 liidese arvutisse, mis lugemite võtmise ajal peab pahatihti kogu aeg töötama. Antud töös uuritakse võimalust mõõdetavate andmete (kohest) edastamist serverisse, mis juba ise tegeleb andmete salvestamise ja visualiseerimisega. Käesoleva bakalaureusetöö eesmärgiks on projekteerida loodava andmehõivemooduli riistvara sisendite ja väljundite sidestamiseks ning toiteahel, mis koosneb nii vahelduvvooluvõrgu toitest kui ka tagavara aku toitest. Lisaks riistvarale tuleb arendada ka tarkvarapakett, mille ülesandeks on tagada LPC1768 ARM Cortex-M3 protsessoril baseeruva andmehõivemooduli stabiilne ja tõrgeteta töö ning selle külge ühendatud anduritest lugemite võtmine, edasine töötlus ja salvestamine. Oluliseks lisanõudeks on juhtprogrammi kõrge töökindluse tagamine, mis võimaldaks seda kasutada ka tööolukordades, kus andmehõivemoodulile ligipääs on raskendatud. Selliseks kohaks võib näiteks olla ilmajaam mõnel väikesaarel. Tarkvara arendatakse C keeles. Bakalaureusetöö käigus arendatakse välja erinevad programmi moodulid andmevoogude edasiseks töötlemiseks ja salvestamiseks sh liideste automaatne algseadistamine; tarkvara taaskäivitus ja veebikliendi tugi mõõdetavate andmete serverisse edastamiseks. Analoog-digitaalmuunduritest mõõdetavate andmete töötlemisel kasutatakse digitaalseid filtreid mõõdetavate andmete kvaliteedi ja mürakindluse tõstmiseks. Andmete automaatne ülekanne välisesse serverisse toimub läbi 3G raadiomodemi. Programmi osad, mis sõltuvad palju konkreetsest kasutatavast riistvarast st andurit tüübist, luuakse viisil, mis võimaldab konkreetse rakenduse hiljem juurde programmeerida, kasutades juba varem loodud liidese definitsioone. Erinevate andmehõivemoodulite automaatseks eristamiseks ja häälestamiseks toimub tarkvara konfigureerimine serverist. Kuna andmehõivemoodul võib ise paikneda tulemüüri taga, siis kogu süsteemi konfigureerimine käib serverist üksiku andmehõivemooduli algatusel teatud ajaintervalliga. Töö esimeses osas antakse ülevaade manussüsteemides kasutatavatest riistvara- ning tarkvaralahendustest. Seejärel tutvustatakse ARM tehnoloogiat ja vastavat käsustikku. Edasi antakse ülevaade juba konkreetselt antud töös kasutatava LPC1768 ARM Cortex-M3 protsessori ehitusest ja võimalustest ning esitatakse nõuded projekteeritavale seadmele. Lisaks tutvustatakse erinevaid aku tehnoloogiaid ning valitakse projekti jaoks sobivaim. Edasi jätkatakse riistvara disainimisega loodavale andmehõivemoodulile. Loodava tarkvara arendust alustatakse üksikute liideste jaoks vajalike meetodite kirjutamisest. Lisaks luuakse meetodid, mis tagavad süsteemi stabiilse töö ka siis, kui mõni liides või tööparameeter on vigane. Näiteks salvestatakse mõõdetavad andmed kohalikus mälus, kui serveriühendus puudub. Serveriühenduse tekkimisel sünkroniseeritakse serveriga ka ühenduse katkestuse ajal mõõdetud andmed. Viimases peatükis uuritakse ja pakutakse välja lahendused kuidas välistada andmete ülekandmisel võimalikud tekkivad vead ning esitatakse algoritm tarkvara automaatseks uuendamiseks serverist. Lisaks uuritakse võimalusi vähendamaks riski, et keegi kolmas osapool saaks serverisse valeandmeid logida või muul moel süsteemi tööd häirida.Item Riistvara virtualiseerimise praktikumitöö ja ettepanekud edaspidiseks virtualiseerimise teema laiendamiseks IT õppes Tartu Ülikoolis(2012-06-02) Nõomaa, AlexMaineka uuringuettevõtte Gartner andmetel oli 2011. aastal x86 arhitektuuriga arvutustehnikast vähemalt 40% virtualiseeritud, mida on ligi kaks korda rohkem kui sama näitaja 2010. aastal. Prognoosi kohaselt kasvab virtualiseeritud tööjaamade arv just virtuaalmasinate osakaalu kasvu toel ning ka turu laienemise tõttu aastatel 2010 kuni 2015 enam kui viiekordseks. Ajal, kus pilvearvutus ja riistvara virtualiseerimine levib plahvatuslikult, ei ole Eesti juhtivates IT-haridust pakkuvates kõrgkoolides nagu Tallinna Tehnikaülikool, Eesti Infotehnoloogia Kolledž ja Tartu Ülikool jätkuvalt selleteemalisi õppematerjale, loengukursuseid ega praktikume ehk tudengitel puudub enne tööturule sisenemist võimalus valdkonnaga lähemalt tutvuda ning omandada tööturul nõutavaid oskusi ja kogemusi. Arvestades Tartu Ülikooli ja LOTE (Loodus- ja tehnoloogiateaduskond) suunda pöörata rohkem rõhku riistvarale kui millelegi reaalselt nähtavale ja kasutatavale, on olemas vajadus kursuse järele, mis käsitleks riistvara virtualiseerimist ning sisaldaks sealhulgas praktilist osa. Personaalarvutites virtualiseerimine on seni olnud kaetud kursuse LOFY.03.002 Arvutiriistvara II ühes loengus ning kursuse LOFY.03.003 Arvutiriistvara praktikum raames ühe praktikumitööna. Keskendun nimetatud praktikumi ümbertegemisele ja arendamisele. Riistvara virtualiseerimise teemalise õppematerjali väljatöötamise jätkamiseks teen eeltöö serveriruumides ning andmekeskustes rakendatava virtualiseerimise teema kajastamiseks praktikumis. Käesoleva bakalaureusetöö eesmärgiks on praktikumitöö väljaarendamine koos esmaversiooni analüüsiga praktika tagasiside põhjal ning anda edasiste suuniste abil lähtematerjal virtualiseerimise praktikumi kui õppeaine loomiseks Tartu Ülikoolis, sealhulgas ülevaade virtualiseerimisturu liidrite – Microsoft, VMware, Citrix ja KVM toodetest kõnealuses valdkonnas.Item Sateliitide jälgimise optimeerimine maajaamades(Tartu Ülikool, 2013) Mahhonin, Ivar; Kvell, Urmas, juhendaja; Kimmel, Lauri, juhendaja; Eenmäe, Tõnis, juhendaja; Tartu Ülikool. Loodus- ja tehnoloogiateaduskond; Tartu Ülikool. Füüsika instituut