Vision-Based Optimization for Snowplowing on Estonian Roads
Laen...
Kuupäev
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Tartu Ülikool
Abstrakt
Tõhus lumesaha trassi planeerimine on kriitilise tähtsusega liiklusohutuse tagamiseks ja talihoolde tegevuskulude minimeerimiseks sellistes külma kliimaga piirkondades nagu Eesti. Traditsioonilised marsruudi optimeerimise lähenemisviisid, nagu segatäisarvuline lineaarne programmeerimine (MILP), pakuvad kvaliteetseid lahendusi, kuid on arvutusmahukad ja neid on raske skaleerida. See lõputöö uurib alternatiivseid andmepõhiseid meetodeid optimaalsete lumesaha marsruutide lähendamiseks piltide abil. Lumesaha optimeerimine on formuleeritud segatäisarvulise lineaarse programmeerimise ülesandena (MILP). Eesti linnade teedevõrgu andmed võetakse treenimiseks OpenStreetMapist (OSM). MILP-i lahendused teisendatakse märgistatud piltideks kas piirdekastide või värviliste teemaskide näol, olenevalt sihtmudelist. Oleme implementeerinud kaks sügavõppel põhinevat nägemismudelit: objektide tuvastamine ja segmenteerimine, kasutades YOLO (You Only Look Once) arhitektuuri, ning pildist pildiks teisendamine pix2pix raamistiku abil. Peenhäälestus- ja ülekandeõpet kasutati YOLO-ga kohandatud andmekogumil ning pix2pixi mudelit treeniti väljastama terviklikke teid katvaid marsruute sisendkaartide põhjal. Mõlemat mudelit hinnati nende võimekuse järgi ennustada sahatavaid teid, mis sarnanevad MILP-iga genereeritud marsruutidega. Tulemused näitavad, et masinnägemise närvimudelid on võimelised pakkuma kiireid ja ligikaudseid alternatiive optimeerimisülesannete lahendajatele, kuid nende rakendatavus pärismaailmas on piiratud.
Efficient snowplow route planning is critical for ensuring road safety and minimizing operational costs during winter maintenance in cold climate regions like Estonia. Traditional approaches to route optimization, such as mixed integer linear programming (MILP), offer high-quality solutions but are computationally intensive and difficult to scale. This thesis explores alternative, data-driven methods for approximating optimal snowplow routes by using images. The snowplowing optimization is formulated as a mixed integer linear programming task (MILP). The road network data from Estonian cities are extracted from OpenStreetMap (OSM) for training. The MILP solutions are converted into labeled images, either as bounding boxes or colored path masks, depending on the target model. We have implemented two deep learning-based vision models: object detection and segmentation using the You Only Look Once (YOLO) architecture, and image-to-image translation using the pix2pix framework. Fine-tuning and transfer learning were used with YOLO on a custom dataset, and pix2pix was trained to produce full route overlays from input maps. Both models were evaluated on their ability to predict plowable paths that closely approximate MILP-generated routes. The results demonstrate that computer vision neural models can serve as fast and approximate alternatives to optimization solvers but with limited applicability in real world scenarios.
Efficient snowplow route planning is critical for ensuring road safety and minimizing operational costs during winter maintenance in cold climate regions like Estonia. Traditional approaches to route optimization, such as mixed integer linear programming (MILP), offer high-quality solutions but are computationally intensive and difficult to scale. This thesis explores alternative, data-driven methods for approximating optimal snowplow routes by using images. The snowplowing optimization is formulated as a mixed integer linear programming task (MILP). The road network data from Estonian cities are extracted from OpenStreetMap (OSM) for training. The MILP solutions are converted into labeled images, either as bounding boxes or colored path masks, depending on the target model. We have implemented two deep learning-based vision models: object detection and segmentation using the You Only Look Once (YOLO) architecture, and image-to-image translation using the pix2pix framework. Fine-tuning and transfer learning were used with YOLO on a custom dataset, and pix2pix was trained to produce full route overlays from input maps. Both models were evaluated on their ability to predict plowable paths that closely approximate MILP-generated routes. The results demonstrate that computer vision neural models can serve as fast and approximate alternatives to optimization solvers but with limited applicability in real world scenarios.
Kirjeldus
Märksõnad
Snowplow Route Optimization, Mixed Integer Linear Programming, Vehicle Routing Problem, Generative Adversarial Network, Computer Vision, Convolutional Neural Network, Lumesaha marsruudi optimeerimine, osaliselt täisarvuline lineaarprogrammeerimine, sõiduki marsruudiprobleem, generatiivne vastandvõrk, masinnägemine, konvolutsiooniline närvivõrk