Integraali keskväärtusteoreemid: keskväärtust määravate punktide asümptootiline käitumine

Kuupäev

2013

Ajakirja pealkiri

Ajakirja ISSN

Köite pealkiri

Kirjastaja

Tartu Ülikool

Abstrakt

The purpose of this thesis is to study the asymptotic behaviour of intermediate points in mean value theorems for integrals. The most simple mean value theorem states that if f : [a; b] ! R is a continuous function then there exists a number c 2 (a; b) such that Z b a f(t) dt = f(c)(b - a): In the case of the simpler mean value theorems for integrals the intermediate point c(x) asymptotically approaches the midpoint of the interval [a; x] and in addition lim sup x!a c(x) - a x - a 1 e : The simplest weighted mean value theorem for integrals states that if f : [a; b] ! R is a continuous function and g : [a; b] ! [0;1) is an integrable function then there exsists a number c 2 [a; b] such that Z b a f(t)g(t) dt = f(c) Z b a g(t) dt: In the case of the weighted mean value theorems for integrals the intermediate point asymptotically approaches the value a + (x - a) k q 1 k+1, where k 2 N is the number of times the function f di erentiable at the point a. Also when f and g are di erentiable then the intermediate point satis es the equation lim x!a R c(x) a g(t) dt R x a g(t) dt = 1 2 : 38 If the conditions set on the functions in the weighted mean value theorems for integrals are expanded to functions that aren't di erentiable at the point a then the approximate value c(x) a + (x - a) r r s + 1 r + s + 1 ; where r 2 (-1; 0) [ (0;1), s 2 (-1;1) and r +s > -1, can be used to provide close approximiations to certain physics' problems.

Kirjeldus

Märksõnad

integraal, integraalide keskväärtusteoreemid, keskväärtust määrav punkt, keskväärtust määrava punkti asümptootiline käitumine, bakalaureusetööd

Viide