Integraali keskväärtusteoreemid: keskväärtust määravate punktide asümptootiline käitumine
dc.contributor.advisor | Leiger, Toivo, juhendaja | |
dc.contributor.author | Maadik, Inger-Helen | |
dc.contributor.other | Tartu Ülikool. Matemaatika-informaatikateaduskond | et |
dc.contributor.other | Tartu Ülikool. Matemaatika instituut | et |
dc.date.accessioned | 2013-06-19T07:58:07Z | |
dc.date.available | 2013-06-19T07:58:07Z | |
dc.date.issued | 2013 | |
dc.description.abstract | The purpose of this thesis is to study the asymptotic behaviour of intermediate points in mean value theorems for integrals. The most simple mean value theorem states that if f : [a; b] ! R is a continuous function then there exists a number c 2 (a; b) such that Z b a f(t) dt = f(c)(b - a): In the case of the simpler mean value theorems for integrals the intermediate point c(x) asymptotically approaches the midpoint of the interval [a; x] and in addition lim sup x!a c(x) - a x - a 1 e : The simplest weighted mean value theorem for integrals states that if f : [a; b] ! R is a continuous function and g : [a; b] ! [0;1) is an integrable function then there exsists a number c 2 [a; b] such that Z b a f(t)g(t) dt = f(c) Z b a g(t) dt: In the case of the weighted mean value theorems for integrals the intermediate point asymptotically approaches the value a + (x - a) k q 1 k+1, where k 2 N is the number of times the function f di erentiable at the point a. Also when f and g are di erentiable then the intermediate point satis es the equation lim x!a R c(x) a g(t) dt R x a g(t) dt = 1 2 : 38 If the conditions set on the functions in the weighted mean value theorems for integrals are expanded to functions that aren't di erentiable at the point a then the approximate value c(x) a + (x - a) r r s + 1 r + s + 1 ; where r 2 (-1; 0) [ (0;1), s 2 (-1;1) and r +s > -1, can be used to provide close approximiations to certain physics' problems. | en |
dc.identifier.uri | http://hdl.handle.net/10062/31066 | |
dc.language.iso | et | et |
dc.publisher | Tartu Ülikool | et |
dc.subject | integraal | et |
dc.subject | integraalide keskväärtusteoreemid | et |
dc.subject | keskväärtust määrav punkt | et |
dc.subject | keskväärtust määrava punkti asümptootiline käitumine | et |
dc.subject | bakalaureusetööd | et |
dc.title | Integraali keskväärtusteoreemid: keskväärtust määravate punktide asümptootiline käitumine | et |
dc.type | Thesis | et |